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FUNDAMENTAL FREQUENCY OF CRACKED BEAMS IN
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This paper presents an analytical approach to the fundamental frequency of cracked
Euler}Bernoulli beams in bending vibrations. The #exibility in#uence function method used
to solve the problem leads to an eigenvalue problem formulated in integral form. The
in#uence of the crack was represented by an elastic rotational spring connecting the two
segments of the beam at the cracked section. In solving the problem, closed-form expressions
for the approximated values of the fundamental frequency of cracked Euler}Bernoulli
beams in bending vibrations are reached. The results obtained agree with those numerically
obtained by the "nite element method.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Cracks can appear in structural elements as a consequence of initial defects within the
material or caused by fatigue during their operational life. Cracks in a structure reduce its
natural frequencies because it becomes more #exible, so, the measurement of these
frequencies may be used to detect the presence, size and location of cracks in a structural
component (See, for instance references [1}3]).

Also, from the natural frequency values and the corresponding vibration mode shapes of
cracked beams, the dynamic stress intensity factor for the three-point [4}6] or one-point
[7] bending specimens may be derived.

Natural frequencies of cracked beams can be obtained by numerical analysis of the
system using the "nite element method (FEM). Alternatively, simpli"ed procedures are
available to evaluate the in#uence of the parameters involved in the problem, such as, crack
length, crack location, boundary conditions, etc. saving the computing time of full FEM
analysis.

Among these simpli"ed methods are those proposed by Christides and Barr [8] and Shen
and Pierre [9, 10], using either a two-term Rayleigh-Ritz [8], or the Galerkin method
[9, 10]. In both approaches, a crack function representing the perturbation in the stress "eld
induced by the crack is considered.

In other cases, the presence of a crack, and the corresponding reduction of the #exural
beam sti!ness, has been represented by means of linear springs [11], whose sti!ness may be
related to the crack length by the Fracture Mechanics theory [12]. This kind of model has
been successfully applied to simply supported [13, 14], cantilever [15] and free}free [16]
cracked beams.

FernaH ndez-SaH ez et al. [17] recently proposed a method to calculate the fundamental
frequency of cracked Euler}Bernoulli beams, providing a closed-form expression for the
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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case of simply supported beam. However, for other boundary conditions, this method could
not provide explicit expressions for the fundamental frequency. In this work, the method of
#exibility in#uence functions [18] is applied to obtain approximate values (lower bounds) of
the fundamental frequency for bending vibrations of cracked Euller}Bernoulli beams with
di!erent boundary conditions. This method was used by Penny and Reed [18] to get
approximate values of the fundamental frequency of uncracked beams subjected to bending
vibrations. Here the approach is extended to the problem of cracked beams. The crack is
represented by means of a rotational spring model and closed-form expressions for the
fundamental frequency are obtained. The results are in agreement with those obtained by
FEM analysis of the problem.

2. ANALYTICAL APPROACH

Consider an Euler}Bernoulli beam of length ¸ subjected to an external load p (x, t)
(Figure 1). At any point x, the beam has a cross-sectional area A(x), an area moment of
inertia about the neutral axis, I (x), and a mass per unit length, m(x) (m(x)"� (x)A(x), � (x)
being the mass density of the beammaterial). The vertical displacement, y (x, t), at any point,
x, of the beam and at any time, t can be expressed as [19]

y (x, t)"�
�

�

c(x, �)p (�, t) d�, (1)

where c (x, �) is the #exibility in#uence function de"ned as the vertical displacement of the
considered point, x, due to a unit load applied at the point of abcissa �. For free beam
vibration, the load acting on the beam is only that due to inertia forces:

p (�, t)"!m(�)
��y

�t�
. (2)

Assuming that the vertical displacement at any point of the beam, y (x, t) can be written as

y(x, t)"u(x) sin(�t). (3)

u(x) being the transverse de#ection of the beam and � the frequency of the harmonic
vibration, equation (1) reduces to

u (x)"���
�

�

c(x, �)m(�)u (�) d�. (4)
Figure 1. Reference system used for a beam subjected to an external load.
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Using new functions, r(x), K
�
(x, �) and �, de"ned through

r (x)"u (x)�m(x), K
�
(x, �)"c(x, �)�m(x)�m(�), �"��

equation (4) becomes

r (x)"��
�

�

K
�
(x, �)r (�) d�. (5)

The last equation is a homogeneous Fredholm integral equation with symmetric kernel,
K

�
(x, �), and represents a classical eigenvalue problem formulated in integral form:

solutions r
�
(x) (eigenfunctions) exist only for a discrete set of values �

�
(eigenvalues).

Although these eigenvalues could be numerically calculated by standard methods (see, for
instance reference [20]), Penny and Reed [18] developed a procedure to obtain bounds of
the "rst eigenvalue, �

�
. From the calculation of the nth iterated kernel, K

�
(x, �), that for

n*2 is de"ned by

K
�
(x, �)"�

�

�

K
���

(x, �)K
�
(�, �) d� (6)

a scalar variable J
�
can be calculated as

J
�
"�

�

�

K
�
(x, x) dx (7)

and upper and lower bounds of the "rst eigenvalue �
�
could be deduced as [18]

�
1

J
�
�
���

(�
�
(

J
���
J
�

. (8)

For the case n"1, this last equation reduces to

1

J
�

(�
�

(9)

with

J
�
"�

�

�

K
�
(x, x) dx. (10)

Since �
�
"��

�
, the value (1/J

�
)��� is a "rst lower bound of the actual value of the

fundamental frequency, �
�
. For n"2, a second lower bound of �

�
can be deduced as

(1/J
�
)���. Obviously, the larger the value of n the closer the bounds.

This procedure was used by Penny and Reed [18] for the case of uniform simply
supported and "xed}"xed beams, as well as for cantilever beams of varying width and
thickness. These authors found, from the analysis of errors involved in the approximation,
that the second lower bound is, in practice, a su$ciently good approximation to the true
value of �

�
.

3. APPLICATION TO CRACKED BEAMS

This method is applied to the analysis of bending vibrations in the x}y plane of a uniform
cracked Euler}Bernoulli beam with di!erent support conditions. The length and width of



Figure 2. Beam with a transverse edge crack: (a) dimensions of the beam and position of the crack; (b) model for
the cracked beam.
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the beam are ¸ and= respectively. The beam has a crack of depth a at a distance b from the
left support, x"0 as shown in Figure 2(a). The vibrational behaviour of this beam is
non-linear in general, due to the opening and closing of the crack. Recently, Chati et al. [21]
have shown that natural frequencies of a cracked beam could be approximated by
combining the natural frequencies obtained in two di!erent assumptions regarding the
crack: it always remains open or closed. In this approach, the calculation of the fundamental
frequency of the beam for bending vibrations will assume that the crack remains always
open.

The cracked beam has been treated as two beams connected by a rotational elastic spring
at the crack section (see Figure 2(b)). The sti!ness of the spring depends on the crack depth
and the geometry of the cracked section. All magnitudes referring to the left segment
(0)x)b) have the subscript 1 and the right one (x'b) is subscripted by 2. If u (x)
represents the transverse de#ection of the beam and �(x) its corresponding slope
(�(x)"du(x)/dx), this model introduces a discontinuity in the slope of the beam at the crack
section (x"b), which is proportional to the bending moment transmitted through it,M

�
(b):

u�
�
(b)!u�

�
(b)"	�"C

�
M

�
(b), (11)

where ( ) )� denotes derivation by x. C
�
is the #exibility constant of the spring and can be

calculated by

C
�
"

=

EI
�(
, geometry of the cross-section) (12)

E being Young's modulus of the beam material, I the moment of inertia of the uncracked
section and � a function depending on the crack ratio 
"a/=, and the beam cross-section
geometry. This function can be evaluated by Fracture Mechanics theory and, in the case of
a rectangular section, it takes the form [22]

� (
)"2�



1!
�
�
(5)93!19)69
#37)14
�!35)84
�#13)12
�). (13)

The other kinematic conditions that should be satis"ed are the continuity of displacements,
bending moments (related to the second derivative of the beam de#ection) and shear forces



TABLE 1

Boundary conditions for the di+erent studied beams

Case x"0 x"¸

Simply supported beam u
�
"0 u

�
"0

d�u
�

dx�
"0

d�u
�

dx�
"0

Cantilever beam u
�
"0 d�u

�
dx�

"0

du
�

dx
"0

d�u
�

dx�
"0

Fixed}pinned beam u
�
"0 u

�
"0

du
�

dx
"0

d�u
�

dx�
"0

Fixed}"xed beam u
�
"0 u

�
"0

du
�

dx
"0

du
�

dx
"0
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(related to the third derivative of the beam de#ection), i.e.,

u
�
(b)"u

�
(b), u��

�
(b)"u��

�
(b), u���

�
(b)"u���

�
(b). (14)

Additionally, four boundary conditions, two for each beam end, must be satis"ed. In this
paper four support conditions are considered: two cases are statically determinate (simply
supported and cantilever beams) and two cases statically undetermined ("xed}pinned and
"xed}"xed beams). Table 1 gives the boundary conditions that apply in each case.

To calculate the vertical displacement c(x, �), as well as the slope of the transverse
de#ection of the beam, �(x, �), the area}moment method can be used, taking account of
both the boundary and the kinematic conditions, i.e.,

� (x, �)"�(0)#�
�

�

M
�
(x, �)
EI

dx#��, (15)

c(x, �)"�(0)x#�
�

�

M
�
(x, �)
EI

xdx#��(x!b), (16)

where �(0) is the slope of the beam at the left support (x"0),M
�
(x, �) the bending moment

at the point x produced by a unit load applied at point �, and �� the discontinuity of the
slope at the cracked section, which is proportional to the bending moment transmitted by
this section (equation (11)). The last terms in equations (15) and (16) (�� and ��(x!b)
respectively) need be considered only for the case of x'b. In other cases (x)b) these terms
must be discarded.

To calculate �(0) for the case of a simply supported beam (in the case of "xed}pinned or
"xed}"xed beams, �(0)"0), as well as the bending moment distributions in the statistically
undetermined cases, it is necessary to consider the support conditions of the beam at the
other end (x"¸).
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Using the non-dimensional variables:

xN "
x

¸

, �M "
�
¸

, �"

b

¸

, �"

=

¸

(17)

the general expression for the function c (x, �) can be written as

c (x, �)"
¸�

EI
cN
�
(xN , �M ; �, �, 
). (18)

For each case considered, the functions cN
�
(x
 , �� ; �, �, 
) constitute a set of six di!erent

functions (i"1, 2,2, 6) that must be applied depending on the relative position of
variables, x
 , �� and �, according to

� i"1. �� (� and 0(x
 (�M .
� i"2. �� (� and �� (x
 (�.
� i"3. �� (� and �(x
 (1.

� i"4. �� '� and 0(x
 (�.
� i"5. �� '� and �(x
 (�� .
� i"6. �� '� and �� (x
 (1.

The expressions of the functions cN
�
(xN , �M ; �, �, 
) for each case are given in Appendix A.

From the above functions, the kernel of equation (5) can be calculated as

K
�
(x, �)"

m¸�

EI
cN
�
(x
 , �� ). (19)

To calculate J
�
(equation (10)), it is necessary to compute, previously,K

�
(x, x). For this it is

helpful to note that cN
�
(xN , x
 )"cN

�
(x
 , x
 ) (necessary to compute K

�
(x, x) for case xN (�), and

cN
�
(x
 , x
 )"cN

	
(x
 , x
 ) (necessary to calculate K

�
(x, x) for case x
 '�).

Therefore, the function K
�
(x, x) has the following expressions:

K
�
(x, x)"

m¸�

EI
cN
�
(x
 , x
 ), x
 (�, (20)

K
�
(x, x)"

m¸�

EI
cN
�
(x
 , x
 ), x
 '�. (21)

From equations (10), (20) and (21), J
�
becomes

J
�
"

m¸�

EI � �
�

�

cN
�
(x
 , x
 ) dx
 #�

�

�
cN
�
(x
 , x
 ) dx
 �. (22)

A second, and closer lower bound of the fundamental frequency can be obtained by
computing the second iterated kernel, K

�
(x, �), and J

�
, using equation (7). For the cracked
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beam the expression for K
�
(x, �) is

K
�
(x, �)"�

m¸�

EI �
�

¸KM
��
(x
 , �M ). (23)

The functions KM
��
(x
 , �� ; �, �, 
) constitute a set of six di!erent functions (i"1, 2,2, 6) that

must be applied depending on the relative position of variables, x
 , �� and �, with the same
meaning as for c


�
(x, �). Details of the calculation of these functions are given in Appendix B.

To calculate J
�

(equation (7)) it is necessary to obtain K
�
(x, x). Note that

KM
��

(x
 , x
 )"KM
��

(x
 , x
 ) (necessary to buildK
�
(x, x) for case x
 (�), andKM

��
(x
 , x
 )"KM

�	
(x
 , x
 )

(necessary to compute K
�
(x, x) for case x
 '�). Therefore, the function K

�
(x, x) has the

following expressions:

K
�
(x, x)"�

m¸�

EI �
�

¸KM
��

(x
 , x� ), x
 (�, (24)

K
�
(x, x)"�

m¸�

EI �
�

¸KM
��

(x
 , x
 ), x
 '� (25)

and, from equations (7), (24) and (25), J
�
can be obtained as

J
�
"�

m¸�

EI �
�

��
�

�

KM
��

(x
 , x
 ) dx
 #�
�

�
KM

��
(x
 , x
 ) dx
 �. (26)

From the above calculations, approximate values (lower bounds) of the fundamental
frequency can be obtained as

First lower bound:

�
�
'�

1

J
�
�
���

"f
�
(�, �, 
)�

EI

m¸�
. (27)

Second lower bound:

�
�
'�

1

J
�
�
���

"f
�
(�, �, 
)�

EI

m¸�
. (28)

The expressions of the functions f
�
and f

�
, which depend on the boundary conditions, are

given in Appendix C.
In this way, closed-form expressions for two lower bounds of the natural frequency of the

cracked beam were obtained.

4. COMPARISON WITH NUMERICAL APPROACH

To validate the proposed method, the results were compared with those obtained by
numerical simulation using the ABAQUS "nite-element code [23]. Several cracked beams
with di!erent boundary conditions and 
"a/= values were considered:
The cases analyzed were:

� Case (a): simply supported cracked beam (�"0)50).
� Case (b): cantilever cracked beam (�"0)75).
� Case (c): "xed}pinned cracked beam (�"0)50).
� Case (d): "xed}"xed cracked beam (�"0)75).



Figure 3. Meshes used in the numerical analysis: (a) cases of b/¸"0)75; (b) cases of b/¸"0)50.

Figure 4. Variation of fundamental frequency with crack ratio of a simply supported beam (b/¸"0)50,
�*

�
"3595)3 rad/s). � Numerical results; ** second lower bound; - - - - "rst lower bound.
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The beam was assumed to be ¸"200 mm long, and rectangular cross-section (width,
="10 mm and thickness, B"10 mm). The beam material had a mass density
�"7850 kg/m� and Young's modulus E"200 GPa.

Details of the mesh used in the numerical analysis are given in Figure 3(a) (Cases (b) and
(d), �"0)75) and Figure 3(b) (Cases (a) and (c), �"0)50). Finite element meshes of 1000
eight-node plane stress element were used. Four zones can be distinguished in every mesh:



Figure 5. Variation of fundamental frequency with crack ratio of a Cantilever beam (b/¸"0)75,
�*

�
"1280)8 rad/s). � Numerical results; ** second lower bound; - - - - "rst lower bound.

Figure 6. Variation of fundamental frequency with crack ratio of a "xed}pinned beam. (b/¸"0)50,
�*

�
"5616)5 rad/s). � Numerical results; ** second lower bound; - - - - "rst lower bound.
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the two zones at each side of the cracked section (300 elements each) and two other zones
(200 elements each). The height of all elements was h/¸"1/200 and their width varied from
d
�
/¸"1/200 near the crack to d

�
/¸"1/80 far away. For each case, 10 analyses were made

for values of the crack ratio, 
, varying from 0 (uncracked beam) to 0)9.
Comparison of the numerical results with the two lower bounds of the fundamental

frequency obtained by the proposed method are shown in Figure 4 (simply supported
beam), Figure 5 (cantilever beam), Figure 6 ("xed}pinned beam) and Figure 7 ("xed}"xed
beam). In these "gures the ratio between the fundamental frequency of the cracked (�

�
) and

uncracked beam (�*
�
) as a function of the parameter 
"a/= is shown. The numerical value

of �*
�
for each case appears in the corresponding "gure.

In all the cases considered, the numerical values of the frequency ratio are less than 1 for
values of 
"0, (no crack). This is because the beam is numerically modelled as
a two-dimensional solid and thus shear e!ect in the beam was implicitly taken into account.
Therefore, although the length/width ratio of the beam is large, there is a small in#uence of
the shear force in the numerical value of the fundamental frequency in comparison with



Figure 7. Variation of fundamental frequency with crack ratio of a "xed}"xed beam (b/¸"0)75,
�*

�
"8150)0 rad/s). � Numerical results; ** second lower bound; - - - - "rst lower bound.

26 J. FERNAD NDEZ-SAD EZ AND C. NAVARRO
those derived from the one-dimensional Euler}Bernoulli beam theory, in which no shear
e!ect is considered. This e!ect, that tends to reduce the fundamental frequency, becomes
more important in cases of "xed}pinned (Figure 6) and "xed}"xed (Figure 7) beams than in
the other two analyzed cases (simply supported and cantilever beams).

In all the cases considered, the "rst lower bound underestimates the numerical value of
the fundamental frequency and the second lower bound agrees very well with the numerical
results. So this second lower bound can be considered an excellent approximation to the
fundamental frequency of bending vibrations of cracked Euler}Bernoulli beams.

5. SUMMARY AND CONCLUSIONS

The method of #exibility in#uence functions is used to approximate the fundamental
frequency for bending vibrations of cracked Euler}Bernoulli beams with di!erent boundary
conditions. The presence of the crack is considered by means of a rotational elastic spring
and, so the #exibility in#uence functions are constructed taking into account the boundary
conditions and the discontinuity in the slope of the beam at the cracked section. This
procedure leads to an eigenvalue problem formulated in integral form and its solution
provides closed-form expressions for the successive lower bounds of the fundamental
frequency. The results are compared with those obtained numerically by a "nite element
computer code and in all cases the results predicted from the closed-form expressions for the
second lower bound are very close to those obtained from the FEM.
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APPENDIX A: FLEXIBILITY FUNCTIONS

A.1. SIMPLY SUPPORTED BEAM

c

�
"�

	
xN (2�� #�M (xN �#�M �)!xN �!3�M �#6�(1!�)��� �), (A1)

c

�
"�

	
�M (2xN #xN (xN �#�M �)!3x
 �!�M �#6�(1!�)�xN �), (A2)

c

�
"�

	
�M (1!xN ) (2xN !xN �!�M �#6� (1!�)��), (A3)

c

�
"!�

	
xN (1!�M ) (xN �#�M (�M !2)!6�(1!�)��), (A4)
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c

�
"�

	
(1!�M )(xN (!xN �#2�M !�M �)#6�(1!xN )���), (A5)

c

	
"�

	
(1!xN )(�M (!xN �#2xN !�M �)#6�(1!�M )���). (A6)

A.2. CANTILEVER BEAM

c

�
"!�

	
xN � (xN !3�M ) (A7)

c

�
"�

	
�M � (3xN !�M ) (A8)

c

�
"�

	
�M � (3xN !�M ) (A9)

c

�
"!�

	
xN � (xN !3�M ) (A10)

c

�
"!�

	
(xN �(xN !3�M )#6�(xN !�) (�!�M )�) (A11)

c

	
"�
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A.3. FIXED}PINNED BEAM
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A.4. FIXED}FIXED BEAM
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APPENDIX B: CALCULATION OF KM
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APPENDIX C. EXPRESSIONS FOR f1 AND f2

C.1. SIMPLY SUPPORTED BEAM
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C.2. CANTILEVER BEAM
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C.3. FIXED}PINNED BEAM
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C.4. FIXED}FIXED BEAM
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